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LETTER TO THE EDITOR

Dynamical ‘strangeness’ at the edge of chaos
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‡ Paul Scherrer Institute, 5232 Villigen, Switzerland
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Abstract. A recently introduced class of dynamical systems, the generalized shifts, is shown
to exhibit both topological chaos, while being metrically ordered, and a phase transition in
the framework of the thermodynamic formalism when this is applied to its entropic properties.
Therefore, it provides a further example of complex behaviour emerging at the border between
order and chaos. Its anomalous dynamical properties are the result of a strong nonhyperbolicity
which, in turn, is a manifestation of uncomputability in generalized shifts.

Chaos and, particularly, metric chaos, defined by the positivity of at least one Lyapunov
exponent [1], has long been recognized as a source of unpredictability. No matter how small
the uncertainty of the present state of the system is, predictions about the future evolution
are affected by exponentially increasing errors. This form of randomness, although the
commonest one, is, however, not the only source of unpredictability in low-dimensional
deterministic nonlinear systems. Examples can be constructed [2] in which any trajectory
is asymptotically attracted by one of two (or more) invariant sets, the basins of attraction
of which are so intricately intertwined that arbitrarily high precision is required to predict
the ultimate fate of the system (riddled basins [3]). This phenomenon is reminiscent of the
undecidability problem occurring in the theory of computation [4]: in fact, no algorithm
presumably exists which is able to assess in a finite number of steps the membership of a
setX0 of initial conditions to one of the basins, no matter how smallX0 is. It may be noted
that a finite computation is, instead, generally sufficient to solve the analogous problem in
a system with one attractor and one repellor.

A closer relationship with computation theory is exhibited by the generalized shifts
(GSs), proposed by Moore [5] as a ‘bridge’ between dynamical systems and Turing
machines. These shifts are, indeed, recognizable as dynamical systems, provided that an
appropriate coding is used to translate their rules into the action of a two-dimensional map
(see later). The parallel with Turing machines shows that there is conceivably no general
algorithm from which the asymptotic behaviour of a generic orbit can be deduced. Because
of the vanishing of the Lyapunov exponents in the example of [5], it is not possible to
decidea priori whether one observes chaotic motion or just a very long periodic orbit. In
fact, the complexity in the evolution of a GS follows from the continuous exchange of
the stable and unstable directions. Although similar to that of nonhyperbolic maps [6], the
situation here is worsened by the lack of a global horseshoe mechanism, as confirmed by
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the extreme rarefaction of the set of periodic orbits which, moreover, contains nearly no
short cycles [5, 7].

In the present work, we study the specific GS introduced in [5] because of its intriguing
properties and show that it is a marginally chaotic system, characterized by the positivity
of both the topological entropyK0 and the generalized expansion rates (entropies)L(q) for
q < 1, and by non-analytic behaviour of the ‘free-energy’L(q) aroundq = 2, which is
indicative of a first-order phase transition in the thermodynamic formalism for dynamical
systems [8–10]. Therefore, this system constitutes a further example of complex behaviour
at the border between order and chaos, which may be added to the well known phenomena
of period-doubling [11], intermittency [12], strange non-chaotic attractors [13], and some
product systems [14]. While the largest Lyapunov exponent is zero in all of them, the time
correlation function decays as a power law in the former three and exponentially in the
latter and in Moore’s GS (at variance with the GS, however, the system of [14] has zero
topological entropy).

For the reader’s convenience, we briefly recall the definition of the generalized shift
[5, 7]. Given an infinite sequenceS = . . . si−1ŝi si+1 . . . of symbolssi ∈ {0, b − 1}, with a
distinct position (marked by the pointer), an updating rule replaces the wordw of length 2r+
1 centred at the reference symbol by a new wordw′ and displaces the pointer by one position.
Both the new wordw′ and the direction of the shift are determined byw. Table 1 illustrates
the binary rule (b = 2) with ranger = 1 introduced in [5] (using a different coding).

Any GS is conjugated to a piecewise linear map of the plane [7]: in fact, the two
semi-infinite sequences at the sides of the pointer define the coordinates(x, y) of a point
in the unit square through the binary expansionsx =∑−∞i=−1 2i si andy =∑∞i=0 2−i si (the
right sequence including, by convention, the symbol under the pointer). Hence, a right shift
yields a contraction along thex-direction and an expansion along they-direction, both by a
factor two. The opposite occurs for the left shift. Furthermore, the substitutions correspond
to translations of rectangles inside the unit square: as long as the dynamics is invertible, it
is also area-preserving as can be easily verified from figure 1.

The behaviour of the generalized shift can be profitably studied by mapping the
movement of the pointer to a symbolic sequenceT = . . . ti−1ti ti+1, in which ti = 0 (1)
corresponds to a left (right) displacement. This coding is a full representation of the GS
since it corresponds to the symbolic dynamics of the GS-map with a binary partition defined
by y = 1/2 in the image square (on the right in figure 1). In fact, ify < 1/2 (> 1/2), the
pointer is positioned on a 0 (1) in the image triplew′ (see table 1). Moreover, this partition
is also generating because each triplew′ univocally identifies one of the rectangles in the
square.

An association between GSs and Turing machines [4] has been made in [5, 7], whereby
the substitutions are assimilated to a change in the machine’s internal state and the pointer
to the tape head. Therefore, the long-time behaviour of a GS is unpredictable, not just
because of sensitivity to the initial conditions but, even more, because of the undecidability
of any general question concerning the state of the machine. For example, no algorithm
can establish whether the pointer will ever reach any preassigned position for generic initial
conditions. Of course, this remark holds only if it is indeed impossible to reproduce the
specific GS with an automaton belonging to a lower class than a Turing machine. Although
this analogy does not render GSs more interesting than shift dynamical systems (as shown
above, a GS does correspond to an ‘ordinary’ subshift dynamics), it helps revealing that
the latter class of systems can exhibit a higher degree of unpredictability than that due to
deterministic chaos. As usual in the theory of computation, however, it is very hard to
prove that a specific model is intimately unpredictable.
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Figure 1. Illustration of the action of the GS-map on the unit square. An eight-element partition
(left) and its image (right) are indicated.

Table 1. Substitution rulesw → w′ for Moore’s generalized shift. The letters from A to H
label the eight phase-space partition elements which correspond tow in the associated two-
dimensional map.

Label w w′

A 00̂0 0̂11
B 00̂1 10̂1
C 01̂0 11̂1
D 01̂1 0̂00
E 10̂0 00̂1
F 10̂1 0̂10
G 11̂0 01̂1
H 11̂1 0̂01

A direct numerical simulation for several distinct choices of the initial condition and
involving more than 1010 iterates suggests the existence of a single ergodic component
covering almost uniformly the whole unit square (up to measure-zero sets). By tiling the
phase space with square cells of linear size 2−8, the ratio between the probability of the
heaviest and the lightest cell was estimated to be about 1.7, without significant changes upon
increase of either the spatial resolution or the statistics (number of iterations). Furthermore,
the power spectrum of the shifts’ sequenceT appears to be continuous, with a few prominent
broadened peaks. In other words, the direct numerical analysis indicates that this model
is not qualitatively different from a typical chaotic system with exponentially decaying
correlations. The only exception to this picture is represented by strong deviations from
a uniform phase-space filling, which are observed at the spatial scale 2−8 even after 107

iterations: this phenomenon represents the first hint of weak chaos.
With the knowledge of the symbolic dynamics, we could identify all theNn legal

subsequencesT of the signalT = . . . ti−1ti ti+1 with length |T | = n, for n = 1, 2, . . . ,80.
As a result, the topological entropyK0 = limn→∞(lnNn)/n has been estimated to be
approximately equal to 0.14 [10], although perfect convergence forn � 1 has not been
achieved by this direct method. These finite-size estimates, however, exclude the possibility
that K0 = 0, a value that might be suggested by the vanishing of the largest Lyapunov
exponent [5]. Accordingly, this model can be interpreted as a further example of a system at
the ‘edge of chaos’, with the additional remarkable feature of the positivity of the topological
entropy. Moreover, although the vertical and horizontal directions are invariant (no rotation



L630 Letter to the Editor

is present), the area-preservation constraint implies that one of them expands when the other
contracts, so that both can, in principle, contribute to the entropy.

In order to clarify these mechanisms, we have studied the periodic orbitsT∞ =
(t1t2 . . . tp)

∞ of the system (wherep is the period and the superscript indicates infinite
repetition of the basic sequence). The orbits identified in [5] are the two fixed points 0∞ and
1∞ (i.e. arbitrarily many left and right shifts, respectively), the two cyclesT7 = (0000111)∞

andT ′7 = (0001101)∞, and a family of period-(15+ n) orbits with n > 1. This is a very
thin set which gives no clue about the possible positivity of the topological entropy. Here,
we show that this set can be greatly enlarged, by proving that any combination of the
wordsT1 = 1 andT16 = 1001011010010111 corresponds to an admissible trajectory of the
dynamical system. Indeed, the spatial sequenceS = 11̂0 is shifted to the right (i.e. the GS
‘emits’ the symbolt = T1 = 1) if a 0 ispresent to its right. If, instead,S is followed by 10,
the GS reproduces it, displaced by two steps to the right, after 16 iterations during which
T16 is emitted. Therefore, provided that no two consecutive 1s are present to the right ofS,
the above procedure can be repeated infinitely many times, thus giving rise to any arbitrary
concatenation ofT1 andT16. Notice that the family of period-(15+ n) orbits found in [5]
corresponds to the particular case(T n−1

1 T16)
∞.

The generalized entropy functionHq associated with the ensembleLuv of all possible
concatenations of two wordsu andv, of lengthsnu andnv, is the solution of the equation
[15]

pqu e(q−1)Hqnu + pqv e(q−1)Hqnv = 1 (1)

wherepu andpv are the respective probabilities. In the present case,nu = 1 andnv = 16,
while pu andpv can be identified with the inverse multipliers 1/2 and 1/4, respectively, of
the corresponding periodic orbits. Forq = 0, we obtainH0 = 0.131 05. . . (independently
of thepis) which, although a lower bound to the topological entropyK0 of the GS, is rather
close to the estimate forK0 found from the direct enumeration of all possible sequences.

A more detailed, although less rigorous, analysis of the statistical properties of this
GS can be performed by approximating its dynamics with Markov processes of increasing
order. Because of the piecewise linearity of the map, this can be done by partitioning the
unit square into the largest rectanglesRi(n) such that theirnth image is still a single (i.e.
unsplit) rectangle. An example of the partition obtained forn = 4 is reported in figure 2.

Then-step transition probabilitiesp(n)ij = P(Rj |Ri) can be approximated by the area of
F n(Ri)∩Rj , whereF n is thenth iterate of the GS mapF , because of the ‘experimentally’
observed uniformity of the invariant measure. Accordingly, one defines the transition matrix

Mα
ij (q; n) = p(n)ij µαi (n)1−q (2)

whereµαi (n) is the expansion factor of theith rectangle along theαth direction (α = x

or y) in n steps (µαi (n) = 2k, with 1 6 k 6 n). The corresponding generalized Lyapunov
exponentsLα(q; n) are then given by

Lα(q; n) = ln3α(q; n)
1− q (3)

where3α(q; n) is the largest eigenvalue ofMα(q; n). Since the map is area preserving,
µxi = 1/µyi andLx(q; n) = Ly(2− q; n).

An equivalent representation of the statistical properties of the GS is provided by the
Legendre transforms ofLα(q; n): i.e. by the spectrahα(λ) of Lyapunov exponents. Since
these functions lend themselves to a more direct interpretation, we shall comment our results
with reference to their properties. Several features are worth being commented upon. First,
the supports of both spectrahα(λ) extend to negativeλ (see figure 3), thus confirming the
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Figure 2. Order-four partition used in the construction of the Markov approximation of the GS
dynamics.

strong nonhyperbolicity of this model†. Second, the difference between the two spectra
far from the regionλ ≈ 0 reveals a clear asymmetry between left- and right-shifting GS
operations. Notwithstanding this, the Lyapunov exponent is remarkably equal to 0 (its value
actually laying below the numerical accuracy, independently of the order of the Markov
process).

From the two Lyapunov spectra, one can also infer the shape of the overall spectrumg(κ)

of the generalized entropies (the Legendre transform of the functionKq). By definition, only
the expanding directions contribute to the entropies. For each trajectory with expansions
occurring along thex-direction there is an equally strong contraction alongy andvice versa:
hence,g(κ) is obtained as the maximum betweenhx(λ) andhy(λ) for all positiveλ = κs.
We find that, as a result of the asymmetry, thex-direction alone determines the spectrum
of entropies.

With reference to the curveg(κ) = hx(λ)|λ=κ>0, we observe that the topological entropy
K0 (i.e. the maximum of the spectrum) already converges quite well forn as small as 4 to the
valueK0 = 0.131(1), which is extremely close to the lower bound determined above from
equation (1). This suggests that the familyLT1T16 of sequences obtained by concatenating
T1 andT16 captures almost the full richness of the GS trajectories. Even if this bound were
saturated, however, we could still not conclude that the dynamical complexity of the GS
is exhausted by the classification of the sequences inLT1T16. In fact, the trajectories that
give the leading contribution to the topological entropy are indeed nowhere dense in phase
space. Even worse, the closure of the set of all such orbits is made of points(x, y) whose
binary expansions have no two consecutive 1s (on either side of the substitution domain of
the GS). Hence, its fractal dimensionD = 2 ln[(1+√5)/2]/ ln 2 = 1.388. . . is definitely
smaller than the dimension of the support of the invariant measure (apparently equal to
two).

† The maximum and minimum local Lyapunov exponents, equal to± log 2, are nothing but the expansion rates
of the two fixed points.



L632 Letter to the Editor

Figure 3. Spectrahα(λ) of Lyapunov exponents againstλ, at the approximation ordern = 20,
whereα = x, y (full and dashed curves, respectively) indicates the direction in phase space.
The inlet shows a vertical expansion of the curveshα(λ) for positiveλ, superimposed on the
analogous curvẽh(λ) (dotted curve) obtained from all concatenations of the two sequencesT1

andT16.

The accuracy in the approximation of the GS dynamics obtained from the setLT1T16 can
be evaluated by comparinghx(λ; n) with the spectrumh̃(λ) given byLT1T16. As seen in
figure 3, the agreement is excellent forλ > 0.15, while h̃(λ) fails completely to reproduce
the real behaviour in the vicinity ofλ = 0. This is clearly due to the hyperbolic structure of
LT1T16 whose minimum Lyapunov exponent is that of the period-16 orbit, which is strictly
positive.

We have further tried to construct an analogous approximation for the orbits with
a left pointer shift. The curvehy(λ) indeed shows that they also have a positive
topological entropy, although smaller than the overall entropy. Unfortunately, the three
possible candidate orbits found in [5–7] (one fixed point and two period-7 cycles)
cannot be concatenated with one another. A computer-aided search has revealed the
existence of longer periodic orbits which, however, again cannot be concatenated. We
just mention the shortest one, of period 128, which corresponds to the spatial configuration
(01)∞10100100011(0001)∞ with a shift by four sites to the left in a whole period.

Finally, notice the linear shape ofhx (hy) for λ < −0.065 (λ > 0.065), suggestive of a
phase transition, which could indicate the absence of periodic orbits with contraction rates
close to that of the fixed point (our search has revealed only cycles with small Lyapunov
exponents). The existence of a phase transition is confirmed by a careful comparison of the
spectra obtained with different approximations: deviations from linearity indeed become
smaller for increasing order of the Markov process. Although it does not affect the entropy
spectrumg(κ), the phase transition is a further element pointing at the complexity of the
underlying dynamics.

We conclude this study by stressing again that the absence of a global horseshoe
mechanism makes the search for periodic orbits and the comprehension of the dynamics
very difficult, since no algorithm exists which is able to give general answers. This is one
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of the manifestations of the uncomputability which underlies generalized shifts. Whether
this is an oddity of this class of models or an observable property of more realistic systems
with, for instance, a coupling between thex- andy-directions, remains an open question.

As a last remark, we comment on the fast convergence of the topological entropy as
estimated with Markov processes. The performance of this approach is superior not only
to the direct enumeration of the legal sequences, but also to the results inferred from the
knowledge of the forbidden sequences (a method which yields an exponential convergence
in the H́enon map [16]). The extension of this approach, unfortunately, is not straightforward
since it requires construction of approximate Markov partitions in truly nonlinear systems.

We wish to thank P Grassberger, in the hope that he remembers the discussions we had
long ago (Torino 1991), which led to a preliminary understanding of the model discussed
herein.
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